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LETTER TO TFIE EDITOR 

Staggered flux phase and d-wave phase of the t-J model 
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Wisconsin-Madison, IlMUniversity Avenue, Madiaon,Wl53706, USA 
t Physics Department, University of Cincinnati, Cincinnati, Ohio 45221, USA 

Received 23 January 1991, in final form 3 May 1991 

Abstract. We have numerically evaluated the energy of the staggered flux phase state (sm), 
the d-wave resonating valence bond state, and the mixed SFP and d-wave state (sm + d) of 
the extended 1-3 model at various hole densities (6). The flux per plaquette and the size of 
the d-wave gap are taken as variational parameters. The calculation includes the kinetic 
energy, spinenergy, the effectivehole-holeinteraction and the three-sitepair-hoppingterm. 
We found that the SFP is stable against the projected Fermi Liquid up to 6 = 20%. 

For moderately large J, J / r  Z 0.4, the SFP + d state may be favoured against the pure d- 
wavestatebutonlyatverylowholedensity(6 - Z%).Thesecalculationsshowthatthepure 
SFP state is never the ground state at hole densities of experimental interest 

One of the most interesting and exotic possibilities for the ground state of the two- 
dimensional t-Jmodel is the staggered flux phase (SFP) state. This was first proposed by 
Affleck and Marston [l] on the basis of a large4 expansion, where N is the number 
of fermion flavours. Variationally, this state corresponds to putting non-interacting 
electrons into the ground state of a system the lattice of which is pierced by magnetic 
flux l i e s  whose directions alternate in a checkerboard pattern. This is followed by 
Gutzwiller projection. Two interesting questions arise: first, whether this can even be 
the ground state of the model; second, what is the relation, if any, to superconductivity. 
One of us recently discussed these issues within a mean-field theory [2], computing the 
energies of the SFP state and a mixed SFP and d-wave superconducting (SFP + d) state. 
The d-wave pairing state considered has a Cooper pair wavefunction of r3 symmetry, 
i.e., A(k)  is proportional to cos k,n - cosk,a, where k is the momentum and a is the 
lattice constant. The coexistence state may be constructed in various ways. We give our 
prescription below (see equations ('2) and (3)). The mean field approximation suggests 
that there is a region of stability in parameter space for the SFP + d state in the presence 
of the hole-hole interaction. This motivated us to use the variational Monte Carlo 
method to carry out the calculation within the space of Gutzwiller wavefunctions. The 
constraint that no sites are doubly occupied is obeyed exactly in this method. 

We search the parameter space of U,, (nearest neighbour hole-hole interaction) 
over a wide range, 6 (hole density) from CMO% hole concentration, and q (flux per 
plaquette) = n/10 (with n = 0, 1, . . . ,5). We compare the energies of the SFP state, the 
sw + d state, the pure d-wave state and the Fermi liquid (FL) state. All our simulations 
were performed on an 82 site lattice. 
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The Hamiltonian we use is defined as follows 

H =  Ti H 2  t H3 + H, 
H, = J Z :  (s, 's, -n,n,/4) 

H ,  = -+JZ ( a ~ + l o a l - o a ~ - ~ ~ , + k o  - a:+f-oaLacoattko) 

T = - t  Z: (aLa,, + HC) 
w.0 

(8.1) 

H A  = unn (1 - nJ(1 - nl). 
W) 

In these formulae a:, = (1 - n,,)c; where CL is the electron creation operator. 
nro = c:,c,, and n, = &a,,,. In H,, the three-site term, the sum runs over nearest neigh- 
bours j and k of site i, which are such that j # k. The three-site term is often ignored 
because of its complexity but at high hole concentration its expectation value can be 
comparable to H,, the Heisenberg term. H4 is the effective hole-hole interaction on 
neighbouringsites. The wavcfunctions we use may be written as follows, 

In this formula PN is the projection on to the N particle subspace and PD is the usual 
Gutzwiller projection onto the subspace of no doubly occupied sites. 

We define Eh,, = f f f i k ,  + ipfix+p, where CY, = [(Ek t y+ cos B)/2Ek]'", pk = 
[(Ex - y+ cos 6')/2E,J1/' sgn(y-) when k belongs to the first half Brillouin zone (~Bz)  
(i.e. (cos k, t cos ky)  > 0). For k outside this region, ax =  CY,-^ and pa = 
yt =  COS k,  -C cos k,) and sgn(y*) = +1 if ye 0, sgn(y,) = -1 if y+ < 0. 
Ex = [(y+ cos e)' + ( y -  sin B)2] l i z  and the energy of the electron state is -E,sgn(y,). 
48/2n = @ is the expression for the flux per plaquette and Q = (n, n). We set 

U J 4  = Aki{-Eks&Y+) - Po + [Ai  + (-&sgn(y+)  PO)^^'^'} (3) 

where A,  = A,,y-/t is related to the superconducting order parameter. and p o  is the 
Fermi energy. 

From the expression for the trial wavefunction, we can see that if we set 0 = 0 (i.e. 
no flux state) then we would have = 1, and (2)  will be reduced to the usual 
expression for the projected BCS wavefunction. However, if we have U, = 0, u k  = 1 when 
k belongs to the first half Brillouin zone and U, = 1, U, = 0 when k does not belong to 
the zone then (2) will reduce to the eigenstates of free electrons in the presence of a 
staggered flux. 

Thus, in our calculation, we have two variational parameters: @(flux) and Ad (order 
parameter). The energy is minimized with respect to these parameters to find the ground 
state. There are different stable states corresponding to different physical parameters 
6, U,. and J / t .  Ad = 0, 0 # 0 corresponds to a pure staggered flux phase state; B = 0, 
Ad # 0 is a pure superconducting d-wave RVB state (if 6 > 0); B # 0, Ad # 0 is a mixed 
SFP and superconducting state. Finally B = 0, Ad = 0 is simply the projected Fermi 
liquid state. In general, the wavefunction represents a state in which the SFP and the 
superconducting state coexist. 

The algorithm used has been described in general terms previously [3]. We verified 
that the present version reproduced earlier results. In particular, the trial wavefunction 

= 0 and 
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Figure 1. Total energy as a function of q7  
the variational parameter for the staggered 
flux phase state at fixed S(= 2.4%) and 
I/( = 0.4. Thesimulationswereperformed 
on an 82 site lattice with 6 x Iff Monte 
Carlo steps. 

QO of holes 
Figure 2. Total energy as a function of holes of the sm state (. .) and the f~ state (-) at 
J/r  = 0.4and Ad = 0, with (0) 0 = h ( b )  @ = fa (c )  @ = B. 

produces exactly the same energy as that from the previous d-wave RVB [4] results when 
we set 0 = Oand Ad#O. 

To indicate how the stability of the various states was established, we give some 
results from typical runs. For simplicity om = 0 initially. In figure 1, we show the energy 
versus flux at a k e d  doping level 6 = 2.4%, and a fixed value of J/t = 0.4. In figure 2, 
we show the comparison of three different SFP states and the FL state as a function of 
doping. From the figure it can be seen that the SFP is stable against the projected Fermi 
liquid up to 6 = 20%. This is qualitatively consistent with the mean field results of [l], 
though the parameters there should be renormalized. The oscillations are due to the 
filling of shells in momentum space, an effect always present in a finite size calculation. 
The oscillations introduce some error in the phase boundaries as a function of 6. 
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Figure 3. The flux (p) of the favourable 
state V~ISUS 6, the hole density. At each 
hole doping, we search the flux space to 
find the lowest energy state. 

One of our main results is shown in figure 3, which gives the most favourable flux 
value as a function of doping. There are several interesting aspects to this plot. At half 
filling (6 = 0), the Hamiltonian (1) reduces to the antiferromagnetic Heisenberg model. 
It is invariant under the local SU(2) transformation [5 ,6 ] :  

where Ia,lZ + Ip,I2 = 1. A SFP state with flux q is transformed to a d-wave state with 
parameter Ad if t a n ( q / 2 )  = Ad/ t .  The commensurate uniform flux phase (flux equal 
to half a flux quantum per plaquette) is equivalent to the SFP with rp = 4. This is the 
ground state in the mean-field theory. Our results at half filling show that this is mot true 
whentheprojectionistreatedexactly. InfactaSF~statewith q = 0.3islowestinenergy, 
showing that the uniform flux phase is not stable with respect to the SFP. More general 
wavefunctions with additional phase factors for the holes in the commensurate uniform 
flux state have been introduced by Ogata ef a1 [7]. As these authors show, the energy is 
not changed too much when this is done. Thus we also expect that these more soph- 
isticated states will also be unstable with respect to the sm. Note also that extensive 
investigations of Nori et al[8]  have shown that the state with precisely one flux quantum 
per electron per spin is always the lowest in energy. Hence it is unlikely that other field 
strengths need to be examined for comparison purposes. These results are consistent 
with earlier calculations in the pure d-wave state [3,4] which showed that Ad = 0.5t is 
lower in energy than the mean-field solution Ad = t. 

Thisnumerical calculation therefore demonstrates that the commensurate flux phase 
(CFP) is locally unstable to fluctuations in the flux of rather short wavelength. This casts 
some doubt on the relevance of the numerous discussions of the excitations of the CFP 
(particularly having to do with their statistics). The mean-field theory results on this 
phase may actually be investigations of the neighbourhood of a saddle point, and not a 
minimum, of the energy. 

C t t  + .,cc7 + P d l  c:l --f - p:c,, + a:.:, 

Table 1. Comparison of the total energy Epersite,kineticenergyE~.per hole andspin energy 
IS, , S, of the optimal smstate with and without the presence of a Small superconducting order 
parameter. J/1  = 0.4. All energies are in units of!. 

6 = 2.44% 6 = 4.88% 

& = 0 -0.286(1) -2.67(3) -0.282(1) -0.347(2) -2,65(2) -0.249(1) 
Ad = 0.11 -0.288(1) -2.65(1) -0.286(1) -0.350(1) -2.63(1) -0.260(1) 
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Table 2. Comparison of the total energy E per site. kinetic energy Er,. per hole and spin 
energy JS, . S, of the optimal d-wave state with and without the presence of a small amount 
of staggered Rux. JJI  = 0.4. All energies are in terms oft. 

~ ~ ~ 

6 = 2.44% 6 = 4.88% 

E E,. JS, . s, E E.. IS, . s, 

T = 0 -0.290(2) -2.64(4) -0.293(1) -0.352(1) -2.60(1) -0.272(1) 
T = 0.1 -0.290(2) -2.61(3) -0.295(2) -0.351(1) -2.56(2) -0.275(1) 

When holes are introduced, the flux goes down rapidly. Indeed, for 6 > 5%, the 
preferred state is always the one with the smallest flux per plaquette, i.e., 

In order to understand whether superconductivity can occur in this picture, we 
studied whether the SFP state was locally stable against d-wave superconductivity and 
vice versa. Initially, we set U,. = 0. The results are summarized in tables 1 and 2. It is 
clear that the SFP is always unstable to d-wave pairing, and is therefore never even a local 
minimum. In contrast, the d-wave state is always stable against the introduction of 
staggered flux. These results are consistent with the renormalized mean-field theory [2]. 

One may also check global stability for selected cases. We verified that the SFP state 
at the optimal flux values was always higher in energy than the mixed (SFP + d) state 
with the same flux and A, = 0.5t. Given this, it is natural to compare the SFP + d state 
with the pure d-wavestate, bothwith A., = O S # .  Typicalresultsareshowninfigure4(a). 
The d-wave state is consistently lower in energy, though the energy difference for low 
doping levels is small. 

The addition of the long-range Coulomb interaction could help to stabilize the SFP. 

= 0.1. 

- -0.4 . . . . . . . ._ % ' -0.5 
-0.8 

0 2 4 6 8 10 12 
no of holes 

Figure 4. Tototal energy as a function of hole density for the SFP + d state [ ' .) and the d- 
wave RYB (-) state at J/r  = 0.5 and A,, = 0.3: (a) without the H4 term (una = o); (b)  with 
the Hd term (um = 6.41). 
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Table 3. Hole-hole correlation function g,, as defined in the text. for various states. The 
statistical error is about '20% when 6 c 7% and is about 10% when 6 > 7%. 

a(%) FL sm dwave s ~ e  + d(@ = 0.1) Sm + d(@ = 0.2) 

2.44 0.00023 0.00021 0.0012 0.00099 0.00058 
4.88 0.0015 0.0013 0.0030 0.0029 0.0030 
7.32 0.0032 a0033 0.0062 0.0065 0.0057 
9.76 0.0062 0.0061 0.0098 0.010 0.0099 
12.2 0.013 0.012 0 014 0015 0.015 

Accordingly, we calculated the hole-hole correlation functionf, for several states, where 

where L is the number of sites. The results are shown in table 3. We may state generally 
that 

s t  (d-wave) = gi (FL) > g1 (sp) 
inanobviousnotation.Therefore apositive u,,favours thesp. However, the differences 
are sufficiently small that there is little effect on the overall stability question. In figure 
4(b), we compare the SFP + d and d-wave states for U,, = 6.41 (a rather large value) and 
find that the energy difference is narrowed but does not change sign except perhaps for 
6 < 2%. The general conclusion for a very wide range of U", and 6 is that the hole-hole 
interaction is not important. 

Since we have done a thorough calculation in a wide range of parameter space 
including the three-site term and the hole-hole effective interaction, we can conclude 
that the SFP + d state is not a candidate for the f-J model forJ/r smaller than 0.5 except 
at very small doping. At these low hole concentrations, high T, materials are insulating. 

After completion of our calculation we received a preprint by Lee and Chang. Some 
of their results, in particular on the pure SFP, are consistent with the above. Also, a paper 
[9] appeared which showed that a superconducting phase with a staggered flux structure 
is stable at large N .  Our results show that this is probably not the case at N = 2. 

This work was supported by the US National Science Foundation under grants DMR- 
8913862 and DMR-8812852. We are very grateful to C Gros for the use of his computer 
programs. The computations were performed at the San Diego Supercomputer Center. 
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